We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A quotient of the ring of symmetricfunctions generalizing quantum cohomology

Formale Metadaten

Titel
A quotient of the ring of symmetricfunctions generalizing quantum cohomology
Alternativer Titel
Quotients of Symmetric Polynomial Rings Deforming the Cohomology of the Grassmannian
Serientitel
Anzahl der Teile
15
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
One of the many connections between Grassmannians and combinatorics is cohomological: The cohomology ring of a Grassmannian Gr(k,n) is a quotient of the ring S of symmetric polynomials in k variables. More precisely, it is the quotient of S by the ideal generated by the k consecutive complete homogeneous symmetric polynomials hn−k,hn−k+1,…,hn. We deform this quotient, by replacing the ideal by the ideal generated by hn−k−a1,hn−k+1−a2,…,hn−ak for some k fixed elements a1,a2,…,ak of the base ring. This generalizes both the classical and the quantum cohomology rings of Gr(k,n). We find three bases for the new quotient, as well as an S3-symmetry of its structure constants, a “rim hook rule” for straightening arbitrary Schur polynomials, and a fairly complicated Pieri rule. We conjecture that the structure constants are nonnegative in an appropriate sense (treating the ai as signed indeterminate), which suggests a geometric or combinatorial meaning for the quotient.