We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Unifying Colour SU(3) with Z3-Graded Lorentz-Poincaré Algebra

Formale Metadaten

Titel
Unifying Colour SU(3) with Z3-Graded Lorentz-Poincaré Algebra
Serientitel
Anzahl der Teile
15
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A generalization of Dirac’s equation is presented, incorporating the three-valued colour variable in a way which makes it intertwine with the Lorentz transformations. We show how the Lorentz-Poincaré group must be extended to accomodate both SU(3) and the Lorentz transformations. Both symmetries become intertwined, so that the system can be diagonalized only after the sixth iteration, leading to a six-order characteristic equation with complex masses similar to those of the Lee-Wick model. The spinorial representation of the Z3-graded Lorentz algebra is presented, and its vectorial counterpart acting on a Z3-graded extension of the Minkowski space-time is also constucted. Application to new formulation of the QCD and its gauge-field content is briefly evoked.