We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Renormalization Hopf Algebras and Gauge Theories

Formale Metadaten

Titel
Renormalization Hopf Algebras and Gauge Theories
Serientitel
Anzahl der Teile
28
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We give an overview of the Hopf algebraic approach to renormalization, with a focus on gauge theories. We illustrate this with Kreimer's gauge theory theorem from 2006 and sketch a proof. It relates Hopf ideals generated by Slavnov-Taylor identities to the Hochschild cocycles that are given by grafting operators. In the second part of the talk I will briefly present Kreimer's unexpected influence on noncommutative geometry via my more recent research. In joint work with Teun van Nuland we uncover a rich structure of the spectral action functional. We express its Taylor expansion in an inner perturbation in terms of Yang-Mills and Chern-Simons forms integrated against even Hochschild and odd cyclic cocycles, respectively.