We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

1/3 Motivic and Equivariant Stable Homotopy Groups

Formale Metadaten

Titel
1/3 Motivic and Equivariant Stable Homotopy Groups
Serientitel
Anzahl der Teile
29
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I will discuss a program for computing C2-equivariant, ℝ-motivic, ℂ-motivic, and classical stable homotopy groups, emphasizing the connections and relationships between the four homotopical contexts. The Adams spectral sequence and the effective spectral sequence are the key tools. The analysis of these spectral sequences break into three main steps: (1) algebraically compute the E2-page; (2) analyze differentials; (3) resolve hidden extensions. I will demonstrate a variety of techniques for each of these steps. I will make precise the idea that ℂ-motivic stable homotopy theory is a deformation of classical stable homotopy theory. I will discuss some future prospects for homotopical deformation theory in general. --- Here is a general reference for the topic of my presentations: - a question about tmf: Lurie used ideas from derived algebraic geometry to construct the classical spectrum tmf. Can this program be transported into motivic homotopy theory? Can we construct "motivic modular forms" spectra over some class of base schemes? For a construction of mmf over the complex numbers, see B. Gheorghe, D. C. Isaksen, A. Krause, and N. Ricka, C-motivic modular forms, J. Eur. Math. Soc., to appear.