We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

2/3 Algebraic K-theory and Trace Methods

Formale Metadaten

Titel
2/3 Algebraic K-theory and Trace Methods
Serientitel
Anzahl der Teile
29
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Algebraic K-theory is an invariant of rings and ring spectra which illustrates a fascinating interplay between algebra and topology. Defined using topological tools, this invariant has important applications to algebraic geometry, number theory, and geometric topology. One fruitful approach to studying algebraic K-theory is via trace maps, relating algebraic K-theory to (topological) Hochschild homology, and (topological) cyclic homology. In this mini-course I will introduce algebraic K-theory and related Hochschild invariants, and discuss recent advances in this area. Topics will include cyclotomic spectra, computations of the algebraic K-theory of rings, and equivariant analogues of Hochschild invariants.