We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine Learning with F#

Formale Metadaten

Titel
Machine Learning with F#
Alternativer Titel
F# and Machine Learning: a winning combination
Serientitel
Anzahl der Teile
170
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
While Machine Learning practitioners routinely use a wide range of tools and languages, C# is conspicuously absent from that arsenal. Is .NET inadequate for Machine Learning? In this talk, I'll argue that it can be a great fit, as long as you use the right language for the job, namely F#. F# is a functional-first language, with a concise and expressive syntax that will feel familiar to data scientists used to Python or Matlab. It combines the performance and maintainability benefits of statically typed languages, with the flexibility of Type Providers, a unique mechanism that enables seamless consumption of virtually any data source. And as a first-class .NET citizen, it interops smoothly with C#. So if you are interested in a language that can handle both flexible data exploration and the pressure of a real production system, come check out what F# has to offer.