We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Feature Analysis for Multimodal News Retrieval

Formale Metadaten

Titel
A Feature Analysis for Multimodal News Retrieval
Serientitel
Anzahl der Teile
4
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2020

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Content-based information retrieval is based on the information contained in documents rather than using metadata such as key-words. Most information retrieval methods are either based on text or image. In this paper, we investigate the usefulness of multimodal features for cross-lingual news search in various domains: politics, health,environment, sport, and finance. To this end, we consider five feature types for image and text and compare the performance of the retrieval system using different combinations. Experimental results show that retrieval results can be improved when considering both visual and textual information. In addition, it is observed that among textual features entity overlap outperforms word embeddings, while geolocation embeddings achieve better performance among visual features in the retrieval task.
Schlagwörter