Examining glycosylation changes
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 163 | |
Autor | ||
Lizenz | CC-Namensnennung - keine Bearbeitung 4.0 International: Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/50397 (DOI) | |
Herausgeber | 05jdrrw50 (ROR) | |
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
Beilstein TV67 / 163
16
20
31
43
44
47
51
57
67
78
102
105
112
131
135
138
139
140
144
145
146
149
150
151
154
157
159
160
161
162
163
00:00
GlykosylierungComputeranimation
00:11
KörpergewichtKüstengebietRäuchernBesprechung/Interview
00:17
Besprechung/Interview
00:23
OberflächenchemieEukaryontische ZelleBesprechung/Interview
00:27
Computeranimation
00:33
KohlenhydratchemieWasserfallBesprechung/Interview
00:39
Eukaryontische ZelleKohlenhydratchemieBesprechung/Interview
00:46
KohlenhydratchemieEukaryontische ZelleGesundheitsstörungKrebsforschungBesprechung/Interview
00:56
Eukaryontische ZelleBesprechung/Interview
01:03
Diole <1,2->KohlenhydratchemieBiologisches MaterialEukaryontische ZelleProteintoxinEukaryontische ZelleGesundheitsstörungKohlenhydratchemieKrebsforschung
01:12
MähdrescherKohlenhydratchemieEukaryontische ZelleBiologisches MaterialBesprechung/Interview
01:23
Biologisches MaterialKohlenhydratchemieSerumBesprechung/Interview
01:29
GesundheitsstörungEukaryontische ZelleZellwachstumKohlenhydratchemieBesprechung/InterviewComputeranimation
01:36
Besprechung/Interview
01:42
KohlenhydratchemieGesundheitsstörungThermoformen
01:48
Biologisches MaterialMolekülProteineKohlenhydratchemieBindungsenergieAbschreckenSingle electron transferEukaryontische ZelleBesprechung/InterviewComputeranimation
01:56
Biologisches MaterialBindungsenergieBesprechung/Interview
02:02
Eukaryontische ZelleComputeranimation
02:08
StammzelleBiologisches MaterialKrebsforschungBesprechung/Interview
02:11
Erdrutsch
02:15
ErdrutschBiologisches MaterialBesprechung/Interview
02:21
StammzelleKrebsforschungBiologisches MaterialBesprechung/Interview
02:26
SeleniteBesprechung/Interview
02:45
Chemische ReaktionKrebsforschungf-ElementSetzen <Verfahrenstechnik>Eukaryontische ZelleComputeranimation
02:48
KrebsforschungSetzen <Verfahrenstechnik>Eukaryontische ZelleBesprechung/Interview
02:52
Setzen <Verfahrenstechnik>BindungsenergieComputeranimation
03:00
Besprechung/Interview
03:04
BindungsenergieKohlenhydratchemieProteineSetzen <Verfahrenstechnik>MicroarrayEukaryontische Zelle
03:11
MicroarraySetzen <Verfahrenstechnik>Besprechung/Interview
03:17
Eukaryontische Zelle
03:23
Eukaryontische ZelleBesprechung/Interview
03:29
IdiotypEukaryontische ZelleChemischer ProzessGesundheitsstörungSingle electron transferBesprechung/Interview
03:38
Eukaryontische ZelleOberflächenchemie
03:45
MolekülbibliothekGesundheitsstörungBesprechung/Interview
Transkript: Englisch(automatisch erzeugt)
00:14
Hi, my name is Lokesh Joshi, I'm a Professor of Glycosciences, SFI Stokes Professor based in NUI Galway on the west coast of Ireland.
00:23
What we are working on is developing technologies to understand the cell surface signatures. And this is an ecosystem and you can tell by looking at the leaves on the tree, whether the tree is healthy or what season it is. You can say this is winter, this is summer, this is autumn or this is fall, by looking at that. Now cells are the same thing, cells are smaller ecosystems
00:42
and by looking at them you should be able to tell whether the cell is young, cell is old. If they have good sugars on them, if they have healthy sugars on them, then we know that the cells or tissues are healthy. And if they have sugars that are wrong, then we know there's a disease. But how do you understand that? How do you study that is important? What we are developing is technology that can get kind of a snapshot of the fingerprints of the cells.
01:03
Each cell has a signature of sugars. Here you have a bacterial toxin, here are two different bacteria that cause two different diseases and here's a cancer cell. Each one of these is covered with different sugars or different combinations of sugars. And if you have the technology to capture that combination of the sugars,
01:21
then you can generate a pattern or a signature. So that's the technology that we are developing in the lab, that we look at the sugars and we develop these fingerprints of the cells or of the serum samples from the patients. So you can imagine that these are the two fingerprints of the cells' sugars under two different conditions of the growth or two different diseases or two different bacteria, whichever way you look at it.
01:42
And then we generate barcode from these sugar signatures and we assign it to the different diseases or different stages of the disease. Now this is what we're doing in the lab. This is amazing technology where we put a set of proteins or molecules that identify specific sugar signatures. So we make them in the lab, we bind them, bind the sample there
02:02
and then we generate a pattern. These green signals are the ones where the cell is binding. And I'll show you an example how we do it. So this is a device, a small device, which basically it opens like this. And then you can look at the slide. So this slide has these eight different quadrants. And you can put your sample in there.
02:21
Sample could be cancer sample, could be different stem cell sample, bacteria sample. And you can close the whole thing together just like this. And then what you do is that you mix with some reagents there and you what we call incubation. That means you mix the whole thing together like this and you put it in an imager. When you do that, it generates an image.
02:42
And this is the image that you see from these slides. It's a beautiful image here of different spots. The green spots show where the reaction is taking place, where there is a difference. And then what you can do here, we have eight different types of cancer cells and each of them is generating a different pattern of binding. So then we know that there are differences in all of these different cancer types.
03:01
What we can also do is to make it visually more appealing is that we can convert those little linear plots into radar plots. And here we have all the proteins that bind to sugars on the same microarray slides that I showed you a second ago. And here we have three different cell types. And you can see that the red, the blue, and the green, they all generate a different binding pattern.
03:21
And that binding pattern is the fingerprint of the cell or the glyco fingerprint of the cell. In this case, it's even more powerful. We took one of these cell lines. We are also able to see the mutation or the changes that the cell is accumulating during the disease process. So this way, I think the goal is that down the road, the clinicians or the diagnostic people or industry,
03:41
they should be able to assign barcodes to every disease, every cell, every stage, every bacteria, every virus. And as soon as the patient walks in, they can match the barcode with what is in the reference library and tell you what the disease there is. And that's the thing that we're developing with a very, very exciting thing that's happening in the field.
Empfehlungen
Serie mit 2 Medien