We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Crunching through big data with MBrace, Azure and F#

Formale Metadaten

Titel
Crunching through big data with MBrace, Azure and F#
Serientitel
Anzahl der Teile
163
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
For data exploration and rapid prototyping, the productivity of an interactive scripting environment is hard to beat: simply grab data, run code, and iterate based on immediate feedback. However, that story starts to break down when the data you have to process is big, or the computations expensive. Your local machine becomes the bottleneck, and you are left with a slow and unresponsive environment. In this talk, we will introduce MBrace.net, an open-source and free engine for scalable cloud programming. Using the MBrace programming model, you can keep working in your beloved familiar scripting environment, and easily execute C# or F# code on a cluster of machines on Azure. We will focus primarily on live demos, from provisioning an Azure cluster with Brisk, to analyzing large datasets in a distributed fashion; in particular, we will discuss how this setup is relevant to data science and machine learning.