We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Ray: Scalability from a Laptop to a cluster

Formale Metadaten

Titel
Ray: Scalability from a Laptop to a cluster
Untertitel
Scale your applications from a laptop to a cluster with ease
Alternativer Titel
Ray: A System for High-performance, Distributed Python Applications
Serientitel
Anzahl der Teile
130
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Ray is an open-source, distributed framework from U.C. Berkeley’s RISELab that easily scales Python applications from a laptop to a cluster. While broadly applicable, it was developed to solve the unique performance challenges of ML/AI systems, such as the heterogeneous task scheduling and state management required for hyperparameter tuning and model training, running simulations when training reinforcement learning (RL) models, and model serving. Ray is now used in many production deployments. I'll explain the problems that Ray solves for cluster-wide scaling of general Python applications and for specific examples, like RL workloads. Ray’s features include rapid scheduling and execution of “tasks” and management of distributed state, such as model parameters during training. I'll compare Ray to other libraries for distributed Python. This talk is for you if you need to scale your Python applications to a cluster and you want a robust, yet easy-to-use API to do it. You don't need to be a distributed systems expert to use Ray. You'll learn when to use Ray versus alternatives, how it’s used in several open source systems, and how to use it in your projects.