We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Practice: Machine learning for earth observation

Formale Metadaten

Titel
Practice: Machine learning for earth observation
Untertitel
& Mapping the "Area of Applicability" of spatial prediction models
Serientitel
Anzahl der Teile
27
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2020
ProduktionsortWicc, Wageningen International Congress Centre B.V.

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This tutorial has two major aims: The first one is to show the general workflow of how land cover classifications (or similar tasks) based on satellite data can be performed in R using machine learning algorithms. The second important aim is to show how to assess the area to which a spatial prediction model can be applied ("Area of applicability", AOA). This is relevant because in spatial predictive mapping, models are often applied to make predictions far beyond sampling locations (i.e. field observarions used to map a variable even on a global scale), where new locations might considerably differ in their environmental properties. However, areas in the predictor space without support of training data are problematic. The model has no knowledge about these environments and predictions for such areas have to be considered highly uncertain.