We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Introduction to Deep Learning in R for analysis of UAV-based remote sensing data

Formale Metadaten

Titel
Introduction to Deep Learning in R for analysis of UAV-based remote sensing data
Serientitel
Anzahl der Teile
27
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2020
ProduktionsortWicc, Wageningen International Congress Centre B.V.

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The aim of this tutorial is to develop a basic understanding of the key practical steps involved in creating and applying a convolutional neural network (CNN) for image analysis – and how to do that in R. These steps are: - Building your model - Preparing your data - Training your model - Predicting with your model Besides the basic workflow, we will discuss two strategies for tackling small data problems, which is specifically important when working with UAV-based data: data augmentation and transfer learning. In addition, we will look at aspects that are important for many remote sensing applications of CNNs: we´ll develop a model for pixel-by-pixel classification (instead of image classification) using an architecture called “U-net”. We will also address the practical question of how to turn a remote sensing image into something that can be processed by our CNN, and how to reassemble the predictions back to a map. Finally, we will briefly touch on the topic of inspecting what a trained model has learned.