We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analysis of Big Earth Data with Jupyter Notebooks

Formale Metadaten

Titel
Analysis of Big Earth Data with Jupyter Notebooks
Serientitel
Anzahl der Teile
27
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2020
ProduktionsortWicc, Wageningen International Congress Centre B.V.

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Growing volumes of Big Earth Data force us to change the way how we access and process large volumes of geospatial data. New (cloud-based) data systems are being developed, each offering different functionalities for users. This lecture is split in two parts: (i) (Cloud-based) data access systems This part will highlight five data access systems that allow you to access, download or process large volumes of Copernicus data related to climate and atmosphere. For each data system, an example is given how data can be retrieved. Data access systems that will be covered: - Copernicus Climate Data Store (CDS) / Copernicus Atmosphere Data Store (ADS) - WEkEO - Copernicus Data and Information Access System - Open Data Registry on Amazon Web Services - Google Earth Engine (ii) Case study: Analysis of Covid-19 with Sentinel-5P data This example showcases a case study analysing daily Sentinel-5P data from 2019 and 2020 with Jupyter notebooks and the Python library xarray in order to analyse a potential observed Covid-19 impact in 2020.