We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geometry of the sign clusters in the Infinite Ising-weighted triangulation

Formale Metadaten

Titel
Geometry of the sign clusters in the Infinite Ising-weighted triangulation
Serientitel
Anzahl der Teile
14
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer. In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The fact that there exists a combinatorial critical value for this model has been initially established in the physics literature by Kazakov and was rederived by combinatorial methods by Bousquet-Mélou and Schaeffer, and Bouttier, Di Francesco and Guitter. Here, we give geometric evidence of that this model undergoes a phase transition by studying the volume and perimeter of its monochromatic clusters. In particular, we establish that, when nu is critical or subcritical, the cluster of the root is finite almost surely, and is infinite with positive probability for nu supercritical.
Schlagwörter