We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Statistics of randomized Laplace eigenfunctions

Formale Metadaten

Titel
Statistics of randomized Laplace eigenfunctions
Serientitel
Anzahl der Teile
13
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
There are several questions about the behavior of Laplace eigenfunctions that are extremely hard to tackle and hence remain unsolved. Among the features that we don’t fully understand yet are: the number of critical points, the size of the zero set, the number of components of the zero set, and the topology of such components. A natural approach is then to randomize the problem and study these features for a randomized version of the eigenfunctions. In this talk I will present several results that tackle the problems described above for random linear combinations of eigenfunctions (with Gaussian coefficients) on a compact Riemannian manifold. This talk is based on joint works with Boris Hanin and Peter Sarnak.