We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AE-OT: A New Generative Model Based on Extended Semi-Discrete Optimal Transport

Formale Metadaten

Titel
AE-OT: A New Generative Model Based on Extended Semi-Discrete Optimal Transport
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2020
ProduktionsortChina

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Current generative models like generative adversarial networks (GANs) and variational autoencoders (VAEs) have attracted huge attention due to its capability to generate visual realistic images. However, most of the existing models suffer from the mode collapse or mode mixture problems. In this work, we give a theoretic explanation of the both problems by Figalli’s regularity theory of optimal transportation maps. Basically, the generator compute the transportation maps between the white noise distributions and the data distributions, which are in general discontinuous. However, deep neural networks (DNNs) can only represent continuous maps. This intrinsic conflict induces mode collapse and mode mixture. In order to tackle the both problems, we explicitly separate the manifold embedding and the optimal transportation; the first part is carried out using an autoencoder (AE) to map the images onto the latent space; the second part is accomplished using a GPU-based convex optimization to find the discontinuous transportation maps. Composing the extended optimal transport (OT) map and the decoder, we can finally generate new images from the white noise. This AE-OT model avoids representing discontinuous maps by DNNs, therefore effectively prevents mode collapse and mode mixture.
Schlagwörter