We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Visual Concept Detection and Linked Open Data at the TIB AV-Portal

00:00

Formale Metadaten

Titel
Visual Concept Detection and Linked Open Data at the TIB AV-Portal
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The German National Library of Science and Technology (TIB) researches and develops methods of automated content analysis and semantic web technologies to improve access to its library holdings and allow for advanced methods of information retrieval (e.g. semantic and cross-lingual search). Regarding scientific videos in the TIB AV-Portal spatio-temporal metadata is extracted by several algorithms analysing (1) superimposed text, (2) speech, and (3) visual content. In addition, the results are mapped against common authority files and knowledge bases via a process of automated Named Entity Linking and published as Linked Open Data to facilitate reuse and interlinking of information. Against this background the TIB constantly aims to improve its automated content analysis and Linked Open Data quality. Currently, extensive research in the fields of deep learning is conducted to significantly enhance methods of visual concept detection in the AV-Portal – both in terms of detection rates and coverage of subject-specific concepts. Our solution applies a state-of-the-art deep residual learning network based on the popular TensorFlow framework in order to predict and link visual concepts in audio-visual media. The resulting predictions are mapped against authority files and expressed as RDF-Triples. Therefore, in our presentation we would like to demonstrate how research in the field of machine learning can be combined with semantic web technologies and transferred to library services like the AV-Portal to improve functionality and provide added value for users. In addition we would like to address the question of data quality assessment and present scenarios of metadata reuse.
Vorlesung/Konferenz
Computeranimation
Computeranimation
Vorlesung/Konferenz
Computeranimation
Computeranimation
Computeranimation
Computeranimation
Computeranimation
ComputeranimationVorlesung/Konferenz
Flussdiagramm
Computeranimation
Vorlesung/Konferenz
Vorlesung/Konferenz
Vorlesung/KonferenzBesprechung/Interview
Vorlesung/Konferenz
Vorlesung/Konferenz
Transkript: Englisch(automatisch erzeugt)