We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Improving data quality at Europeana

Formale Metadaten

Titel
Improving data quality at Europeana
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Europeana aggregates metadata from a wide variety of institutions, a significant proportion of which is of inconsistent or low quality. This low-quality metadata acts as a limiting factor for functionality, affecting e.g. information retrieval and usability. Europeana is accordingly implementing a user- and functionality-based framework for assessing and improving metadata quality. Currently, the metadata is being validated (against the EDM XML schema) prior to being loaded into the Europeana database. However, some technical choices with regard to the expressions of rules impose limitations on the constraints that can be checked. Furthermore, Europeana and its partners sense that more than simple validation is needed. Finer-grained indicators for the 'fitness for use' of metadata would be useful for Europeana and its data providers to detect and solve potential shortcomings in the data. Beginning 2016, Europeana created a Data Quality Committee to work on data quality issues and to propose recommendations for its data providers, seeking to employ new technology and innovate metadata-related processes. This presentation will describe more specifically the activities of the Committee with respect to data quality checks: - Definition of new data quality requirements and measurements, such as metadata completeness measures; - Assessment of (new) technologies for data validation and quantification, such as SHACL for defining data patterns; - Recommendations to data providers, and integration of the results into the Europeana data aggregation workflow.