We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Make you IOT Smarter with Tensorflow Lite...

Formale Metadaten

Titel
Make you IOT Smarter with Tensorflow Lite...
Untertitel
...to Design the Future of Vertical Farming
Alternativer Titel
AI at the edge with Tensorflow Lite to Design the Future of Vertical Farming
Serientitel
Anzahl der Teile
490
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
While Machine Learning is usually deployed in the cloud, lightweight versions of these algorithms that fit for constrained IoT systems such as microcontrollers are appearing. Using Machine Learning « at-the-edge » has indeed several advantages such as the reduction of network latency, it provides better privacy, and are working offline. In this presentation, we will demonstrate how to deploy Deep Learning algorithms on IoT devices thanks to TensorFlow Lite. We will see how to use it to design a smart vertical farming system able to predict and optimize the plant growth, at home or in developing countries where a reliable Internet connection still is missing. In this talk I will show how trending technologies like IoT, Machine Learning and Tensorflow can make the world better :) I will discuss how we can use Tensorflow Lite on IoT and evaluate its performances and limits. I will explain our use case in vertical farming, show code snippets and make some short demo. Summary: Vertical farming use case, how to use technologies to try stopping hunger in poor countries Our IoT system for data collection: data collection, electronics and embedded system Tensorflow Lite How we use Tensorflow Lite on RPI Short Demo Performance evaluation, limits, further work