We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Production-time Profiling for Python

Formale Metadaten

Titel
Production-time Profiling for Python
Serientitel
Anzahl der Teile
490
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Learn how to scrutinize your Python application in order to optimize them and make them run faster. Getting inside knowledge of how your Python application runs is critical in order to achieve the best performance. Profiling is a mean to achieve this: by gathering all the runtime information available about the execution of your program, you might be able to understand how to optimize it. However, profiling running code in production might be a real challenge as it requires the profiler to be noninvasive and having low overhead. Therefore, to profile production services, statistical profiling is the favorite analysis method. By regularly checking your program activity, you’ll be able to find production code bottlenecks down to the line of code. Profiling services that are running with real workload makes sure that you are collecting valuable data and that you are not guessing what the performance barrier might be. This talk explains how it’s possible to build a statistical profiler that collects information about CPU time usage, memory allocation, and other information — all that while respecting the need for low overhead, data export format, and granularity. We’ll dig into some of the operating systems and CPython internals to understand how to build the best profiler possible.