We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Efficient Model Selection for Deep Neural Networks on Massively Parallel Processing Databases

Formale Metadaten

Titel
Efficient Model Selection for Deep Neural Networks on Massively Parallel Processing Databases
Serientitel
Anzahl der Teile
490
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this session we will present an efficient way to train many deep learning model configurations at the same time with Greenplum, a free and open source massively parallel database based on PostgreSQL. The implementation involves distributing data to the workers that have GPUs available and hopping model state between those workers, without sacrificing reproducibility or accuracy. Then we apply optimization algorithms to generate and prune the set of model configurations to try. Deep neural networks are revolutionizing many machine learning applications, but hundreds of trials may be needed to generate a good model architecture and associated hyperparameters. This is the challenge of model selection. It is time consuming and expensive, especially if you are only training one model at a time. Massively parallel processing databases can have hundreds of workers, so can you use this parallel compute architecture to address the challenge of model selection for deep nets, in order to make it faster and cheaper? It’s possible! We will demonstrate results from this project using a version of Hyperband, which is a well known hyperparameter optimization algorithm, and the deep learning frameworks Keras and TensorFlow, all running on Greenplum database using Apache MADlib. Other topics will include architecture, scalability results and bright opportunities for the future.