We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Snorkel Beambell - Real-time Weak Supervision on Apache Flink

Formale Metadaten

Titel
Snorkel Beambell - Real-time Weak Supervision on Apache Flink
Serientitel
Anzahl der Teile
490
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The advent of Deep Learning models has led to a massive growth of real-world machine learning. Deep Learning allows Machine Learning Practitioners to get the state-of-the-art score on benchmarks without any hand-engineered features. These Deep Learning models rely on massive hand-labeled training datasets which is a bottleneck in developing and modifying machine learning models. Most large scale Machine Learning systems today like Google’s DryBell use some form of Weak Supervision to construct lower quality, large scale training datasets that can be used to continuously retrain and deploy models in a real-world scenario. The challenge with continuous retraining is that one needs to maintain prior state (e.g., the learning functions in case of Weak Supervision or a pre-trained model like BERT or Word2Vec for Transfer Learning) that is shared across multiple streams, while continuously updating the model. Apache Beam’s Stateful Stream processing capabilities are a perfect match here including support for scalable Weak Supervision.