We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Space Complexity of Inner Product Filters

Formale Metadaten

Titel
The Space Complexity of Inner Product Filters
Serientitel
Anzahl der Teile
25
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Motivated by the problem of filtering candidate pairs in inner product similarity joins we study the following inner product estimation problem: Given parameters d∈ℕ, α>β≥0 and unit vectors x,y∈ ℝ^d consider the task of distinguishing between the cases ⟨x,y⟩≤β and ⟨x,y⟩≥α where ⟨x,y⟩ = ∑_{i=1}^d x_i y_i is the inner product of vectors x and y. The goal is to distinguish these cases based on information on each vector encoded independently in a bit string of the shortest length possible. In contrast to much work on compressing vectors using randomized dimensionality reduction, we seek to solve the problem deterministically, with no probability of error. Inner product estimation can be solved in general via estimating ⟨x,y⟩ with an additive error bounded by ε = α - β. We show that d log₂ (√{1-β}/ε) ± Θ(d) bits of information about each vector is necessary and sufficient. Our upper bound is constructive and improves a known upper bound of d log₂(1/ε) + O(d) by up to a factor of 2 when β is close to 1. The lower bound holds even in a stronger model where one of the vectors is known exactly, and an arbitrary estimation function is allowed.