We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Random Sampling and Size Estimation Over Cyclic Joins

Formale Metadaten

Titel
Random Sampling and Size Estimation Over Cyclic Joins
Serientitel
Anzahl der Teile
25
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Computing joins is expensive, and often unnecessary when the output size is large. In 1999, Chaudhuri et al. [Surajit Chaudhuri et al., 1999] posed the problem of random sampling over joins as a potentially effective approach to avoiding computing the join in full, while obtaining important statistical information about the join results. Unfortunately, no significant progress has been made in the last 20 years, except for the case of acyclic joins. In this paper, we present the first non-trivial result on sampling over cyclic joins. We show that after a linear-time preprocessing step, a join result can be drawn uniformly at random in expected time O(IN^ρ/OUT), where IN^ρ is known as the AGM bound of the join and OUT is its output size. This result holds for all joins on binary relations, as well as certain joins on relations of higher arity. We further show how this algorithm immediately leads to a join size estimation algorithm with the same running time.