We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Spectral theory of unimodular random trees: a few results and many questions

Formale Metadaten

Titel
Spectral theory of unimodular random trees: a few results and many questions
Serientitel
Anzahl der Teile
27
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Studying spectral properties of large random objects has been a very active playground in probability theory, mathematical physics and computer science during the last decades. The motivations are manifold: viewing random matrices as a model for complicated quantum Hamiltonians, studying random Schrödinger operators to understand the Anderson localization phenomenon, viewing eigenvectors of random matrices as models for eigenmodes of quantized chaotic systems, or understanding the geometry of large (random) graphs such as expanders via the spectral properties of their adjacency matrices. In those studies the emphasis is generally put either on the eigenvalues or the eigenvectors of the object.