We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Mano Decompositions and the Space of Monodromy Data of the q-Painlevé VI Equation

Formale Metadaten

Titel
The Mano Decompositions and the Space of Monodromy Data of the q-Painlevé VI Equation
Serientitel
Anzahl der Teile
20
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Mano Decompositions and the Space of Monodromy Data of the q-Painlevé V I Equation The talk is based upon a joint work with Y. OHYAMA and J. SAULOY. Classically the space of Monodromy data (or character variety) of PV I (the sixth Painlevé differential equation) is the space of linear representations of the fundamental group of a 4-punctured sphere up to equivalence of representations. If one fixes the local representation data it “is” a cubic surface. We will describe a q-analog: the space of q-Monodromy data of the q-Painlevé V I equation. For the q-analogs of the Painlevé equations (which are non-linear q-difference equations), according to H. SAKAI work, “everything” is well known on the “left side” of the (q-analog of the) Riemann-Hilbert map (the varieties of “initial conditions”), but the “right side” (the q-analogs of the spaces of Monodromy data or character varieties) remained quite mysterious. We will present a complete description of the space of Monodromy data of q−PV I (some local data being fixed). It is a “modification” of an elliptic surface and we will explicit some “natural” parametrizations. This surface is analytically, but not algebraically isomorphic to the Sakai surface of ”initial conditions”. Our description uses a new tool, the Mano decompositions, which are a q-analog of the classical pants decompositions of surfaces. We conjecture that our constructions can be extended to the others q-Painlevé equations. This involves q-Stokes phenomena.
Schlagwörter