We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Jupyter, Django and Altair

Formale Metadaten

Titel
Jupyter, Django and Altair
Untertitel
Quick and dirty business analytics
Serientitel
Anzahl der Teile
32
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Django’s great for building web apps. Jupyter’s great for sharing reproducible analysis. Altair’s great for making analysis interactive, and easier to understand visually. Here’s how to use them all together. For a large part of last year, I was working in a small, cross disciplinary team in a business information company, building data products to help make sense of public spending data. Our shared language across the team was python, and over the year, we came up with a workflow that let our analysts and data science specialists work with Jupyter notebook to carry out analysis, and build interactive data viz using Altair to explore data, before taking the same code used to generate these charts, and incorporate them in the main django app as data products for our customers. This talk outlines why these tools are useful together, explaining how Altair packages up some of the most recent advances in thinking about data vizualisation techniques, and makes them accessible to python developers for exploratory analysis of data using Jupyter and Django together. We’ll finish by showing how, once you’re happy with them, you can then integrate these same interactive visualisations into an existing django application, and make them accessible to your users.