We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Industrial Machine Learning

Formale Metadaten

Titel
Industrial Machine Learning
Untertitel
Horizontally scalable Data Pipelines with Airflow
Alternativer Titel
Industrial Machine Learning Pipelines with Python & Airflow
Serientitel
Anzahl der Teile
132
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Industrial Machine Learning This talk will provide key insights on the learnings I have obtained throughout my career building & deploying machine learning systems in critical environments across several sectors. I will provide a deep dive on how to build scalable and distributed machine learning data pipelines using Airflow with a Celery backend. I will also compare Airflow with other technologies available out there and how it differentiates, such as Luigi, Chronos, Pinball, etc. If you attend the talk, you will obtain an understanding on the solid fundamentals of Airflow, together with its caveats and walk-arounds for more complex use-cases. As we proceed with the examples, I will cover the challenges that you will run into when scaling Machine Learning systems, and how Airflow can be used to address these using a manager-worker-queue architecture for distributed processing with Celery. By the end of this talk you will have the knowledge required to build your own industry-ready machine learning pipelines to process data at scale, and I will provide further reading resources so people are able to implement the knowledge obtained almost right away.