We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Recipe for text analysis in social media: a linguistic approach

Formale Metadaten

Titel
Recipe for text analysis in social media: a linguistic approach
Serientitel
Anzahl der Teile
132
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The analysis of text data in social media is gaining more and more importance every day. The need for companies to know what people think and want is key to invest money in providing customers what they want. The first approach to text analysis was mainly statistical, but adding linguistic information has been proven to work well for improving the results. One of the problems that you need to address when analyzing social media is time. People are constantly exchanging information, users write comments every day about what they think of a product, what they do or the places they visit. It is difficult to keep track of everything that happens. Moreover, information is sometimes expressed in short sentences, keywords, or isolated ideas, such as in Tweets. Language is usually unstructured because it is composed of isolated ideas, or without context. I will talk about the problem of text analysis in social media. I will also explain briefly Naïve Bayes classifiers, and how you can easily take advantage of them to analyse sentiment in social media, and I will use an example to show how linguistic information can help improve the results. I will also evaluate the pros and cons of supervised vs unsupervised learning. Finally, I will introduce opinion lexicons, both dictionary based and corpus-based, and how lexicons can be used in semi-supervised learning and supervised learning. If I have time left, I will explain about other use cases of text analysis.
Schlagwörter