We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Building new NLP solutions with spaCy and Prodigy

Formale Metadaten

Titel
Building new NLP solutions with spaCy and Prodigy
Serientitel
Anzahl der Teile
132
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Commercial machine learning projects are currently like start-ups: many projects fail, but some are extremely successful, justifying the total investment. While some people will tell you to "embrace failure", I say failure sucks --- so what can we do to fight it? In this talk, I will discuss how to address some of the most likely causes of failure for new Natural Language Processing (NLP) projects. My main recommendation is to take an iterative approach: don't assume you know what your pipeline should look like, let alone your annotation schemes or model architectures. I will also discuss a few tips for figuring out what's likely to work, along with a few common mistakes. To keep the advice well-grounded, I will refer specifically to our open-source library spaCy, and our commercial annotation tool Prodigy.