We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Python in scientific computing

Formale Metadaten

Titel
Python in scientific computing
Untertitel
what works and what doesn't
Serientitel
Anzahl der Teile
132
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Python in scientific computing: what works and what doesn't [EuroPython 2018 - Talk - 2018-07-25 - Fintry [PyData]] [Edinburgh, UK] By Michele Simionato There is no want of technologies for doing scientific calculations in Python. In this talk I will share some hard-learned knowledge about what works and what doesn't with the libraries we are using at GEM (the Global Earthquake Model foundation). I will show how the following libraries fare with respect to our main concerns of performance, simplicity, reliability and portability and I will talk about several library bugs we found and had to work around. I will also talk about some libraries that we do not use (such as cython, numba, dask, pytables, ...) and the reason why we do not use them. Hopefully this will be useful to people using or planning to use a similar software stack. My slides are here: https://gitpitch.com/micheles/papers/europython2018 License: This video is licensed under the CC BY-NC-SA 3.0 license: https://creativecommons.org/licenses/by-nc-sa/3.0/ Please see our speaker release agreement for details: https://ep2018.europython.eu/en/speaker-release-agreement/