We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine learning on non curated data

Formale Metadaten

Titel
Machine learning on non curated data
Untertitel
Dirty data made easy
Serientitel
Anzahl der Teile
118
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
According to industry surveys [1], the number one hassle of data scientists is cleaning the data to analyze it. Textbook statistical modeling is sufficient for noisy signals, but errors of a discrete nature break standard tools of machine learning. I will discuss how to easily run machine learning on data tables with two common dirty-data problems: missing values and non-normalized entries. On both problems, I will show how to run standard machine-learning tools such as scikit-learn in the presence of such errors. The talk will be didactic and will discuss simple software solutions. It will build on the latest improvements to scikit-learn for missing values and the DirtyCat package [2] for non normalized entries. I will also summarize theoretical analyses in recent machine learning publications. This talk targets data practitioners. Its goal are to help data scientists to be more efficient analysing data with such errors and understanding their impacts. With missing values, I will use simple arguments and examples to outline how to obtain asymptotically good predictions [3]. Two components are key: imputation and adding an indicator of missingness. I will explain theoretical guidelines for these, and I will show how to implement these ideas in practice, with scikit-learn as a learner, or as a preprocesser. For non-normalized categories, I will show that using their string representations to “vectorize” them, creating vectorial representations gives a simple but powerful solution that can be plugged in standard statistical analysis tools [4]. [1] Kaggle, the state of ML and data science 2017 https://www.kaggle.com/surveys/2017 [2] https://dirty-cat.github.io/stable/ [3] Josse Julie, Prost Nicolas, Scornet Erwan, and Varoquaux Gaël (2019). “On the consistency of supervised learning with missing values”. https://arxiv.org/abs/1902.06931 [4] Cerda Patricio, Varoquaux Gaël, and Kégl Balázs. ""Similarity encoding for learning with dirty categorical variables."" Machine Learning 107.8-10 (2018): 1477 https://arxiv.org/abs/1806.00979