We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Natural language processing with neural networks.

Formale Metadaten

Titel
Natural language processing with neural networks.
Untertitel
Solve your language processing problem with neural networks without going bankrupt.
Serientitel
Anzahl der Teile
118
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Getting started with a natural language processing and neural networks is easier nowadays thanks to the numerous talks and tutorials. The goal is to dive deeper for those who already know the basics, or want to expand their knowledge in a machine learning field. The talk will start with the common use cases that can be generalized to the specific problems in a NLP world. Then I will present an overview of possible features that we can use as input to our network, and show that even simple feature engineering can change our results. Furthermore, I will compare different network architectures - starting with the fully connected networks, through convolution neural networks to recursive neural networks. I will not only considering the good parts, but also - what is usually overlooked - pitfalls of every solution. All of these will be done considering number of parameters, which transfers into training and prediction costs and time. I will also share a number of “tricks” that enables getting the best results even out of the simple architectures, as these are usually the fastest and quite often hard to beat, at the same time being the easiest to interpret.
Schlagwörter