We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data-Driven Customer Relationship Management bin Banking with Python

Formale Metadaten

Titel
Data-Driven Customer Relationship Management bin Banking with Python
Untertitel
Meeting a banking client's needs with machine learning across multiple sales channels
Alternativer Titel
Building Data-Driven Client Relationship Management in Banking with Python
Serientitel
Anzahl der Teile
118
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This is a case study that documents how a small data science team in a big bank took on the challenge to transform a fragmented sales process into a data-driven one using Python and machine learning. This talk outlines the various ways Python has been instrumental in delivering a production solution that serves advisers and relationship manager on a continuous basis. The Challenge - A bank has many clients with diverse needs and cost pressures mean fewer advisers resulting in reduced client coverage. - Multiple sales channels and mixed service levels meant sales processes were uncoordinated and driven by heuristics and often very subjective. - And... Excel sheets everywhere! Solution - Go data-driven! - Learn from clients and understand product usage - Empower and inform advisers and call centre agents - Build a front-to-back sales process (no more Excels!) - How? With Python! The Python Bits - Scikit learn machine learning pipelines that implement two distinct approaches to product affinity in banking and wealth management - SQL Alchemy based API for data engineering and rapid prototyping of analytics - Pandas and Jupyter for development and collaboration - Luigi pipeline for daily processing of millions of transactions and engineering features - Extracting features from text with NLP (Spacy) - Delivering machine learning interpretability in production, e.g. with Random Forests and treeinterpreter - A Python module that we built with all the reusable bits: building training and prediction datasets, developing pipelines, generating monitoring data and enabling explainability
Schlagwörter