We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Understanding Source Code with Deep Learning

Formale Metadaten

Titel
Understanding Source Code with Deep Learning
Serientitel
Anzahl der Teile
561
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Code is written by humans for humans and machines. By learning from the human-oriented components of code, recent research has invented models that start to "understand" some aspects of source code. This opens the exciting possibility of using machine learning to assist developers in their everyday tasks, such as writing new code and finding bugs. In this talk, I will give a brief tour of our lab's recent explorations in this area. Then I will focus on a specific kind of neural networks, namely graph neural networks (GNN). These networks allow us to learn from the rich semantic relationships within code and, by training them on a self-supervised task, they have allowed us to find bugs in open-source projects. I will conclude with a brief discussion of the practical challenges in using machine learning on source code.