We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Machine Learning: From Lab to Production with Kubeflow

Formale Metadaten

Titel
Machine Learning: From Lab to Production with Kubeflow
Untertitel
(w. Special Guests Tensorflow and Apache Spark)
Alternativer Titel
Introducing Kubeflow
Serientitel
Anzahl der Teile
561
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Data Science, Machine Learning, and Artificial Intelligence has exploded in popularity in the last five years, but the nagging question remains, “How to put models into production?” Engineers are typically tasked to build one-off systems to serve predictions which must be maintained amid a quickly evolving back-end serving space which has evolved from single-machine, to custom clusters, to “serverless”, to Docker, to Kubernetes. In this talk, we present KubeFlow- an open source project which makes it easy for users to move models from laptop to ML Rig to training cluster to deployment. In this talk we will discuss, “What is KubeFlow?”, “why scalability is so critical for training and model deployment?”, and other topics. Users can deploy models written in Python’s skearn, R, Tensorflow, Spark, and many more. The magic of Kubernetes allows data scientists to write models on their laptop, deploy to an ML-Rig, and then devOps can move that model into production with all of the bells and whistles such as monitoring, A/B tests, multi-arm bandits, and security.