We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

2/6 On the local Langlands conjectures for reductive groups over p-adic fields

Formale Metadaten

Titel
2/6 On the local Langlands conjectures for reductive groups over p-adic fields
Serientitel
Teil
2
Anzahl der Teile
6
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Hadamard Lectures 2017 Abstract: Consider a reductive group G over a p-adic field F. The local Langlands conjecture relates the irreducible smooth representations of G(F) with the set of (local) L-parameters, which are maps from the Weil group of F to the L-group of G; refinements of the conjecture relate the fibres of this map with the automorphism group of the L-parameter. Based on ideas from V. Lafforgue's work in the global function field case, I outlined a strategy for attaching (semisimple) L-parameters to irreducible smooth representations of G(F) in my 2014 Berkeley course. At the same time and place, L. Fargues formulated a conjecture relating the local Langlands conjecture with a geometric Langlands conjecture on the Fargues-Fontaine curve. The goal of this course will be to discuss some of the developments since then. On the foundational side, this concerns basics on the etale cohomology of diamonds including smooth and proper base change and Poincare duality, leading up to a good notion of "constructible" sheaves on the stack of G-bundles on the Fargues-Fontaine curve. On the applied side, this concerns the construction of (semisimple) L-parameters, the conjecture of Harris (as modified by Viehmann) on the cohomology of non-basic Rapoport-Zink spaces, and the conjecture of Kottwitz on the cohomology of basic Rapoport-Zink spaces.