We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Resurgence and Modularity

Formale Metadaten

Titel
Resurgence and Modularity
Serientitel
Anzahl der Teile
4
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Why do modular forms tend to have integer coefficients in their q-expansion? Are they counting something? And, can we "categorify" a modular form by representing it as a graded Euler characteristic of some homology theory? There are several ways to answer these questions, e.g. the one based on classical theory of modular forms relates them to counting points on elliptic curves and motives of higher-dimensional varieties. In this talk, we will ask these questions for mock modular forms, introduced by Ramanujan. They also exhibit q-expansion with integer coefficients and, surprisingly, the answer to these question is based on resurgent analysis of a different power series, which at first shows no signs of integrality!
Schlagwörter