We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analyzing floating car data with clickhouse db, postgres and R

Formale Metadaten

Titel
Analyzing floating car data with clickhouse db, postgres and R
Serientitel
Anzahl der Teile
295
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr2019
SpracheEnglisch

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Spatio-temporal datasets like sensor-data or floating car data can be rather overwhelming because they quickly get in the order of billions of records. In this talk I show how we made billions of floating car data entries into a workable datastream that outputs visually attractive and useful maps and graphs over a routable network. I will start by summarizing the relatively new OS clickhouse database and how this column store helps in dealing with massive temporal datasets. Next I explain how we set up the pipeline with postgres/gis, pgrouting and R in order to create analysis in seconds and share some interesting results that you can get from these large trafficdatasets. The talk will be relatively code-focused (mainly SQL and R) but also show some ind-depth analyses of car data.
Schlagwörter