We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geospatial data processing for image automatic analysis

Formale Metadaten

Titel
Geospatial data processing for image automatic analysis
Serientitel
Anzahl der Teile
295
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Deep learning algorithms appear as a major breakthrough in GIS scope: neural networks are able to do semantic segmentation on aerial images, so as to identify building footprints, roads, and so on. Oslandia is an opensource company studying and exploiting geospatial data, with an extensive R&D activity about geospatial data science. This presentation will detail some of our Python routines in terms of geospatial data handling. We will describe our processes from raw data to prediction results. As the main step of the pipeline, machine learning techniques (e.g. convolutional neural networks for image semantic segmentation with Keras) produce valuable predictions. In the case of geospatial data, a postprocessing step is often necessary for displaying the results in web applications and GIS tools. A concrete illustration of our results will be provided through a light Flask application designed for demonstration purpose.
Schlagwörter