We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Experimental Analysis of Streaming Algorithms for Graph Partitioning

Formale Metadaten

Titel
Experimental Analysis of Streaming Algorithms for Graph Partitioning
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We report a systematic performance study of streaming graph partitioning algorithms. Graph partitioning plays a crucial role in overall system performance as it has a significant impact on both load balancing and inter- machine communication. The streaming model for graph partitioning has recently gained attention due to its ability to scale to very large graphs with limited resources. The main objective of this study is to understand how the choice of graph partitioning algorithm affects system performance, resource usage and scalability. We focus on both offline graph analytics and online graph query workloads. The study considers both edge-cut and vertex-cut approaches. Our results show that the no partitioning algorithms performs best in all cases, and the choice of graph partitioning algorithm depends on: (i) type and degree distribution of the graph, (ii) characteristics of the workloads, and (iii) specific application requirements