We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Border-Collie: A Wait-free, Read-optimal Algorithm for Database Logging on Multicore Hardware

Formale Metadaten

Titel
Border-Collie: A Wait-free, Read-optimal Algorithm for Database Logging on Multicore Hardware
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Actions changing the state of databases are all logged with proper ordering being imposed. Database engines obeying this golden rule of logging enforce total ordering on all events, and this poses challenges in addressing the scalability bottlenecks of database logging on multicore hardware. We reexamined the problem of database logging and realized that in any given log history, obtaining an upper bound on the size of a set that preserves the happen-before relation is the essence of the matter. Based on our understanding, we propose Border-Collie, a wait-free and read-optimal algorithm for database logging that finds such an upper bound even with some worker threads often being idle. We show that (1) Border-Collie always finds the largest set of logged events satisfying the condition in a finite number of steps (i.e., wait-free), (2) the number of logged events to be read is also minimal (i.e., read-optimal), and (3) both properties hold even with threads being in intermittent work. Experimental results demonstrated that Border-Collie proves our claims under various workloads; Border-Collie outperforms the state-of-the-art centralized logging techniques (i.e., Eleda and ERMIA) by up to ~2X and exhibits almost the same throughput with much shorter commit latency than the state-of-the-art decentralized logging techniques (i.e., Silo and FOEDUS).