We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together

Formale Metadaten

Titel
Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Subgraph matching (or subgraph isomorphism) is one of the fundamental problems in graph analysis. Extensive research has been done to develop practical solutions for subgraph matching. The state-of-the-art algorithms such as textsfCFL-Match and textsfTurbotextsubscriptiso convert a query graph into a spanning tree for obtaining candidates for each query vertex and obtaining a good matching order with the spanning tree. However, by using the spanning tree instead of the original query graph, it could lead to lower pruning power and a sub-optimal matching order. Another limitation is that they perform redundant computation in search without utilizing the knowledge learned from past computation. In this paper, we introduce three novel concepts to address these inherent limitations: 1) dynamic programming between a directed acyclic graph (DAG) and a graph, 2) adaptive matching order with DAG ordering, and 3) pruning by failing sets, which together lead to a much faster algorithm textsfDAF for subgraph matching. Extensive experiments with real datasets show that textsfDAF outperforms the fastest existing solution by up to orders of magnitude in terms of recursive calls as well as in terms of the elapsed time.