We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Top-k Queries over Digital Traces

Formale Metadaten

Titel
Top-k Queries over Digital Traces
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Recent advances in social and mobile technology have enabled an abundance of digital traces (in the form of mobile check-ins, association of mobile devices to specific WiFi hotspots, etc.) revealing the physical presence history of diverse sets of entities (e.g., humans, devices, and vehicles). One challenging yet important task is to identify k entities that are most closely associated with a given query entity based on their digital traces. We propose a suite of indexing techniques and algorithms to enable fast query processing for this problem at scale. We first define a generic family of functions measuring the association between entities, and then propose algorithms to transform digital traces into a lower-dimensional space for more efficient computation. We subsequently design a hierarchical indexing structure to organize entities in a way that closely associated entities tend to appear together. We then develop algorithms to process top-k queries utilizing the index. We theoretically analyze the pruning effectiveness of the proposed methods based on a mobility model which we propose and validate in real life situations. Finally, we conduct extensive experiments on both synthetic and real datasets at scale, evaluating the performance of our techniques both analytically and experimentally, confirming the effectiveness and superiority of our approach over other applicable approaches across a variety of parameter settings and datasets.