We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Log-Structured Merge-Bush & the Wacky Continuum

Formale Metadaten

Titel
The Log-Structured Merge-Bush & the Wacky Continuum
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Data-intensive key-value stores based on the Log-Structured Merge-Tree are used in numerous modern applications ranging from social media and data science to cloud infrastructure. We show that such designs exhibit an intrinsic contention between the costs of point reads, writes and memory, and that this trade-off deteriorates as the data size grows. The root of the problem is that in all existing designs, the capacity ratio between any pair of levels is fixed. This causes write cost to increase with the data size while yielding exponentially diminishing returns for point reads and memory. We introduce the Log-Structured Merge-Bush (LSM-Bush), a new data structure that sets increasing capacity ratios between adjacent pairs of smaller levels. As a result, smaller levels get lazier by gathering more runs before merging them. By using a doubly-exponential ratio growth rate, LSM-bush brings write cost down from O(log N) to O(loglog N), and it can trade this gain to either improve point reads or memory. Thus, it enables more scalable trade-offs all around. We further introduce Wacky, a design continuum that includes LSM-Bush as well as all state-of-the-art merge policies, from laziest to greediest, and can assume any of them within a single implementation. Wacky encompasses a vast space of performance properties, including ones that favor range reads, and it can be searched analytically to find the design that performs best for a given workload in practice.