We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

RaSQL: Greater Power and Performance for Big Data Analytics with Recursive-aggregate-SQL on Spark

Formale Metadaten

Titel
RaSQL: Greater Power and Performance for Big Data Analytics with Recursive-aggregate-SQL on Spark
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Thanks to a simple SQL extension, Recursive-aggregate-SQL (RaSQL) can express very powerful queries and declarative algorithms, such as classical graph algorithms and data mining algorithms. A novel compiler implementation allows RaSQL to map declarative queries into one basic fixpoint operator supporting aggregates in recursive queries. A fully optimized implementation of this fixpoint operator leads to superior performance, scalability and portability. Thus, our RaSQL system, which extends Spark SQL with the before-mentioned new constructs and implementation techniques, matches and often surpasses the performance of other systems, including Apache Giraph, GraphX and Myria.