We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Ariadne: Online Provenance for Big Graph Analytics

Formale Metadaten

Titel
Ariadne: Online Provenance for Big Graph Analytics
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Data provenance is a powerful tool for debugging large-scale analytics on batch processing systems. This paper presents Ariadne, a system for capturing and querying provenance from Vertex-Centric graph processing systems. While the size of provenance from map-reduce-style workflows is often a fraction of the input data size, graph algorithms iterate over the input graph many times, producing provenance much larger than the input graph. And though current provenance tracing procedures support explicit debugging scenarios, like crash-culprit determination, developers are increasingly interested in the behavior of analytics when a crash or exception does not occur. To address this challenge, Ariadne offers developers a concise declarative query language to capture and query graph analytics provenance. Exploiting the formal semantics of this datalog-based language, we identify useful query classes that can run while an analytic computes. Experiments with various analytics and real-world datasets show the overhead of online querying is 1.3x over the baseline vs. 8x for the traditional approach. These experiments also illustrate how Ariadne's query language supports execution monitoring and performance optimization for graph analytics.