We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Instance and Output Optimal Parallel Algorithms for Acyclic Joins

Formale Metadaten

Titel
Instance and Output Optimal Parallel Algorithms for Acyclic Joins
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Massively parallel join algorithms have received much attention in recent years, while most prior work has focused on worst-optimal algorithms. However, the worst-case optimality of these join algorithms relies on hard instances having very large output sizes, which rarely appear in practice. A stronger notion of optimality is output-optimal, which requires an algorithm to be optimal within the class of all instances sharing the same input and output size. An even stronger optimality is instance-optimal, i.e., the algorithm is optimal on every single instance, but this may not always be achievable. In the traditional RAM model of computation, the classical Yannakakis algorithm is instance-optimal on any acyclic join. But in the massively parallel computation (MPC) model, the situation becomes much more complicated. We first show that for the class of r-hierarchical joins, instance-optimality can still be achieved in the MPC model. Then, we give a new MPC algorithm for an arbitrary acyclic join with load O (IN over p + sqrtIN cdot OUT over p), where IN,OUT are the input and output sizes of the join, and p is the number of servers in the MPC model. This improves the MPC version of the Yannakakis algorithm by an O (sqrtOUT over IN ) factor. Furthermore, we show that this is output-optimal when OUT = O(p cdot IN), for every acyclic but non-r-hierarchical join. Finally, we give the first output-sensitive lower bound for the triangle join in the MPC model, showing that it is inherently more difficult than acyclic joins.