We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Breaking down scientific mono cultures by cross-disciplinary software development

Formale Metadaten

Titel
Breaking down scientific mono cultures by cross-disciplinary software development
Serientitel
Anzahl der Teile
60
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
At the Netherlands eScience Center we contribute with 50+ domain- and computer scientists to an unusually broad range of scientific projects across all quantitative scientific domains. This triggers cross-disciplinary exchange, the strength of which will be illustrated by presenting an ongoing project on linking metabolomic and genetic data. Computational analysis of genomes can predict biosynthetic gene clusters (BGCs) responsible for producing complex biochemical compounds, many of which are still unknown. Adapting machine-learning tools from different domains, we develop a novel method aiming to pinpoint causal links between predicted BGCs and yet unidentified compound signals detected in rich metabolite mixtures.