We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

From Shopping Baskets to Structural Patterns

Formale Metadaten

Titel
From Shopping Baskets to Structural Patterns
Serientitel
Anzahl der Teile
611
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2017

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Mining frequent itemsets is an established approach to data mining andsupported by productive data mining solutions. For example, one can getinsights about buyers’ behavior by analyzing frequent co-occurrences ofproducts in shopping baskets. In contrast, frequent subgraph mining (FSM), thegraphy variant of frequent itemset mining, not only evaluates entity co-occurrence but also relationships among entities, i.e., structural patterns.However, existing implementations are all research prototypes which aretailored to textbook problems. In our talk, we want to give an introduction to the FSM problem on distributedcollections of graphs and our implementation in Gradoop, an open source systemfor scalable graph analytics based on Apache Flink. In contrast to otheriterative graph algorithms like page rank, in FSM the search space is droppedbut intermediate results of iterations are the desired result. Here, the majortechnical challenge is the respective usage of Flinks’ distributed iterations. We will explain different implementation approaches, discuss implementationdetails which influence scalability and show benchmark results. Intended audience and goal of the talk: Developers and analysts, interested inrelationship-centric data mining techniques